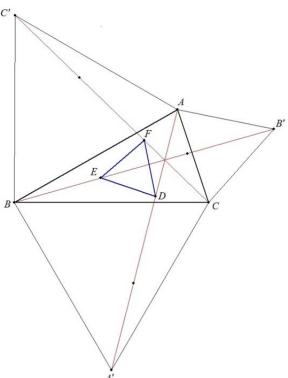
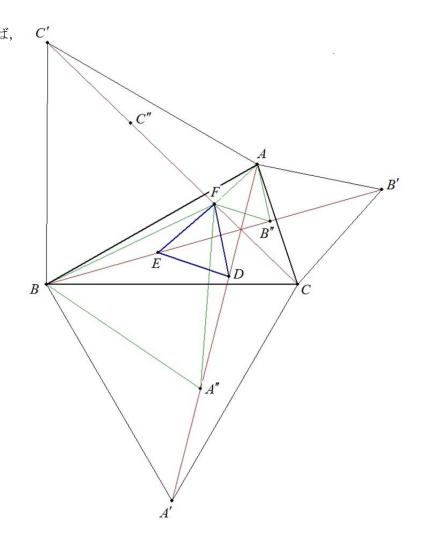
$\triangle ABC$ の各辺上に正三角形を外側に作り、その第 3 頂点を A',B',C' とし、AA',BB',CC'の 3 等分点のうち A,B,C に近い方の点をそれぞれ D,E,F とすると、 $\triangle DEF$ は正三角形となる。

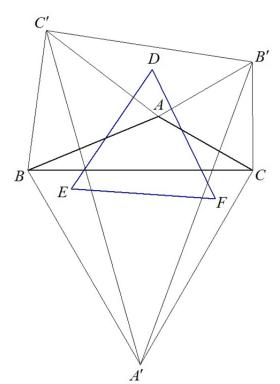


(証明)

A'' を AA' の 3 等分点の A' に近い方の点とすれば、 C' $\Delta ABA' \equiv \Delta C'BC$ (B の周りに 60° 回転) $\therefore BA'' = BF$ 、 $\angle A''BF = 60^\circ$ よって $\Delta A''BF$ は正三角形 同様にして $\Delta AB''F$ も正三角形となる。 よって、 F の周りに 60° 回転すれば $\Delta FA''A \equiv \Delta FBB''$ $\therefore FD = FE$ 、 $\angle DFE = 60^\circ$ ゆえに ΔDEF も正三角形となる。



 ΔABC の各辺上に正三角形を外側に作り、その第 3 頂点を A',B',C' とし、 $\Delta AB'C',\Delta BC'A',\Delta CA'B'$ の重心を それぞれ D,E,F とすると、 ΔDEF は正三角形となる。



(証明)

座標平面上で、 $\triangle ABC$ の頂点の座標をA(p,q),B(0,0),C(a,0)とおく。

点A'は点Cを原点中心に -60° 回転させた点で,同様に,点B'は点Cを点A中心に 60° 回転させた点,点C'は点Aを原点中心に 60° 回転させた点であるから,

$$A'\!\left(\frac{a}{2},\!-\frac{\sqrt{3}a}{2}\right)\!,\!B'\!\left(\frac{a+p+\sqrt{3}q}{2},\!\frac{\sqrt{3}(p-a)\!+q}{2}\right)\!,\!C'\!\left(\frac{p-\sqrt{3}q}{2},\!\frac{\sqrt{3}p+q}{2}\right)\!\succeq\!\!\uparrow_{\!\mathcal{S}}\!,\!\circlearrowleft$$

D, E, F はそれぞれ $\triangle AB'C', \triangle BC'A', \triangle CA'B'$ の重心であるから,

$$D\left(\frac{a+4p}{6}, \frac{\sqrt{3}a+4q}{6}\right), E\left(\frac{a+p-\sqrt{3}q}{6}, \frac{\sqrt{3}(p-a)+q}{6}\right), F\left(\frac{4a+p+\sqrt{3}q}{6}, \frac{-\sqrt{3}p+q}{6}\right)$$

となる。

このとき,

$$DE = \sqrt{\left(\frac{a+p-\sqrt{3}q}{6} - \frac{a+4p}{6}\right)^2 + \left(\frac{\sqrt{3}(p-a)+q}{6} - \frac{\sqrt{3}a+4q}{6}\right)^2}$$
$$= \sqrt{\frac{a^2+p^2+q^2-ap+\sqrt{3}aq}{3}}$$

同様に,
$$EF = FD = \sqrt{\frac{a^2 + p^2 + q^2 - ap + \sqrt{3}aq}{3}}$$

となるので ΔDEF は正三角形となる。

(別証明)

複素平面上でA(a),B(b),C(c),A'(a'),B'(b'),C'(c')とおく。

$$\triangle AB'C'$$
の重心を $D(d)$ とすれば

$$3d = a + b' + c'$$

ところが

$$b' + \omega a + \omega^2 c = 0, c' + \omega b + \omega^2 a = 0$$

であるから

$$3d = a - (\omega a + \omega^2 c) - (\omega b + \omega^2 a) = 2a - \omega b - \omega^2 c$$

同様に $\Delta BC'A'$, $\Delta CA'B'$ の重心をそれぞれE(e),F(f)とすれば

$$3e = 2b - \omega c - \omega^2 a$$
, $3f = 2c - \omega a - \omega^2 b$

となるから

$$3(d + \omega e + \omega^{2} f)$$

$$= (2a - \omega b - \omega^{2} c) + \omega(2b - \omega c - \omega^{2} a) + \omega^{2} (2c - \omega a - \omega^{2} b)$$

$$= (2a - 2\omega^{3})a + (\omega - \omega^{4})b + (-2\omega^{3} + 2)c$$

$$\therefore d + \omega e + \omega^2 f = 0$$

よって3点D(d),E(e),F(f)は正三角形を作る。

